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Abstract 

The conventional crystallographic least-squares pro- 
cedure has been compared with a robust/resistant 
modification in which the weight of each reflection is 
multiplied by a function of the ratio of its residual to a 
resistant measure of the width of the residual dis- 
tribution on the previous cycle. Three synthetic data 
sets were created by adding random errors, according 
to various probability distributions, to the calculated 
structure factors for a known crystal structure. A set 
with a Gaussian error distribution was refined with two 
sets of weights: one assigned correctly in proportion to 
the reciprocals of the variances of the data points, the 
other using unit weights throughout. The second error 
distribution was Gaussian contaminated by 10% 
drawn from another Gaussian distribution with its 
variance nine times greater. The third distribution was a 
long-tailed distribution derived by dividing a random 
variable with a Gaussian distribution by an inde- 
pendent random variable with a uniform distribution. 
Each of the first three cases was refined to con- 
vergence using both conventional and robust/resistant 
procedures, with the modified procedure leading to a 
result at least as close to the known structure as the 
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conventional procedure. In the fourth case, the conven- 
tional procedure gave a poor fit, but the robust/ 
resistant procedure converged to a reasonable ap- 
proximation to the correct structure. 

Introduction 

In a previous paper (Nicholson, Prince, Buchanan & 
Tucker, 1982) we have described the application of a 
robust/resistant (hereafter designated R/R) refinement 
algorithm to refinement of the multiple data sets 
collected from L-(+)-tartaric acid (formerly known as 
D(+)-tartaric acid) in the International Union of 
Crystallography's Single Crystal Intensity Project 
(Abrahams, Hamilton & Mathieson, 1970). The 
procedure proved to be a very efficient means of 
separating from the data sets small numbers of data 
points which were inconsistent with the body of the 
data, and convergence was thereby achieved for several 
of the data sets in which least-squares (LS) refinement 
was unstable in the previous study carried out by 
Hamilton & Abrahams (1970). In addition, some, but 
not all, of the variability in refined parameters from the 
LS refinement was removed. 
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The results of the study on the L-(+)-tartaric acid 
data provided strong evidence that the alternative 
procedure is 'resistant', i.e., that it is insensitive to 
variations in small subsets of the data. To show that it 
is also 'robust', i.e., that it precisely estimates the 
correct model over a wide range of conditions where 
the error distributions are not Gaussian and the weights 
are not proportional to the reciprocals of the variances 
of the data points, would require an exact knowledge of 
the true structure parameters, knowledge that is not 
available in an experimental situation. In order to study 
the robustness of the procedure, therefore, we have 
made use of several synthetic data sets in which the 
'observed' structure factors were actually the cal- 
culated structure factors for a known model to which 
random errors had been added according to various 
probability distributions. 

Creation of data sets 

Three synthetic data sets were created; one of them was 
refined using two different weighting schemes, making 
four cases altogether. The starting point in each case 
was a set of 233 calculated structure factors corre- 
sponding to the refined structure of ammonium azide 
(Prince & Choi, 1978). For case I a random-number 
generator was used to generate a list of numbers that 
had a Gaussian distribution with zero mean and unit 
variance. These numbers were multiplied by 2.5% of 
the calculated F and then added to the calculated F to 
produce a list of 'observed' F 's  with a Gaussian error 
distribution. In case I each value of F received a weight 
equal to 1/(0.025F) 2. In case II the list of synthetic 
observed F 's  was identical to case I, but all F 's  were 
assigned unit weights. For case III 10% of the errors 
were multiplied by three before adding to the cal- 
culated F's.  Finally, in case IV each number in the 
Gaussian list was divided by another random number 
drawn from a distribution that is uniform over the 
range from 0 to 1. This produces a probability density 
function O0') = (270-1/211 - e x p ( - y 2 / 2 ) ] / y  2. It has 
long tails similar to the Cauchy (or Lorentzian) 
distribution, but its density near the middle is less 
sharply peaked than is a Cauchy distribution. In cases 
III and IV, the weights used were the same as those in 
case I. 

Refinement procedure 

Each of the four cases was refined twice, using a modifi- 
cation of the least-squares refinement program R F I N E 4  
(Finger & Prince, 1975). The starting model was the 
structure from which the data set was derived. The 
function minimized was Y w ( I F  ol -- IF c I) 2. In each 
case the refinement was first run with fixed weights, as 

in conventional least squares. The refinement was then 
repeated using the R/R algorithm. In practice this 
amounts to modifying the weights, in each cycle after 
the first, by W" = W i o ( R i / a S ) ,  where Ri = 
W~/2(IFoil -- I Foil), a is a constant chosen to exclude 
the most extreme data, and S is a resistant measure of 
scale. For the weight-modifying function, we have used 
Tukey's (1974)'biweight'  function, defined by tp (x )=  
(1 - x 2 )  2 for Ixl <_ 1; tD(x) = 0 for Ixl > 1. The 
measure of scale for the ( j  + 1)th cycle is given by a 
formula suggested by Huber (1973), 

Sj÷~= ( l / t )  {¢p[R~(Oj)/aSjlR~(Oj)}2/(n-p , 
i = 1  

where n is the number of data points, p is the number of 
parameters, and 0j designates the vector of estimated 
parameters used in thej th cycle, fl is the expected value 
of z 2 ~0(z) if Z is distributed according to the true 
error-distribution function. If the error distribution is 
Gaussian and a = 6, then t =  0.72767. 

The LS refinement of case I was carried through 
seven cycles to ensure complete convergence. That the 
LS procedure gives results close to those expected for 
this idealized case is shown by the fact that the 
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Fig. 1. A half-normal quantile--quantile plot of the observed 
absolute shifts of the refined parameters from the initial structure, 
in each case divided by the estimated standard deviation, for a 
synthetic data set with a Gaussian error distribution. The squares 
are for a conventional least-squares refinement, and the ordinate 
is labeled on the left. The circles are for a robust/resistant 
refinement, and the ordinate is labeled on the right. Straight lines 
passing through the origin with unit slope are shown for 
comparison. 
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weighted agreement index, R w, is 0.022 and the 
estimated standard deviation of an observation of unit 
weight is 0.99. 

Among the 40 parameters in the model, the 
sensitivity of the calculated structure factors to vari- 
ations in the parameters varies widely from parameter 
to parameter. In order to put all shifts on a common 
scale the estimated standard deviation of each par- 
ameter as calculated in the LS refinement of case I was 
taken as a measure of relative precision for that 
parameter for all refinements. A half-normal quantile- 
quantile plot (Abrahams & Keve, 1971) of the ordered 
absolute differences between the refined parameters and 
their 'correct' values divided by the standard deviation 
is shown in Fig. 1 for case I. The fact that almost all of 
the points in this plot lie close to the line passing 
through the origin with unit slope is further con- 
firmation that the LS procedure gives results close to 
those expected in the idealized case, in spite of the fact 
that the linearized model is only an approximation to 
the true one. 

The other seven refinements were carried through 
four cycles, satisfactory convergence being achieved in 
every case, with no shift in the final cycle greater than 
0.05 of a standard deviation. Table 1 is a summary of 
the agreement indices of the eight cases. For the R/R 
refinement, the estimated standard deviation of an 
observation of unit weight, S, is computed from 
Huber's formula, given above. 

Discussion of results 

Figs. 1 through 4 are half-normal quantile-quantile 
plots (Abrahams & Keve, 1971) of the differences 
between the refined parameters and the 'correct' 
parameters. The ordinate of each plotted point is 
Ix r - xcl /sx,  where s x is the estimated standard 
deviation of parameter x calculated from the LS 
refinement of case I and x~ and x c are, respectively, the 
refined and correct values of each parameter. The 
values of this quantity for the 40 parameters are 

Table 1. S u m m a r y  o f  agreement index information f o r  

refinement o f  various data sets 

N is the number of reflections included in the R /R  refinement. The 
nurhber in the LS refinement was 233 for all cases. 

E.s.d. denotes the estimated standard deviation of an observation of 
unit weight. For the R /R  refinement, S is the estimated standard 

deviation computed using Huber's formula. 

LS R/R 

Case R R w e.s.d. N R Rw S 
I 0.018 0.022 0.99 233 0.018 0.021 1.00 
II 0.018 0.020 3.06 233 0.018 0.019 2.82 
III 0.022 0.028 1.22 233 0.022 0.025 1.17 
IV 0.055 0.130 5.77 224 0.031 0.034 1.66 
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Fig. 2. A half-normal quantile-quantile plot, as in Fig. 1, for 
least-squares and robust/resistant refinements for the data set 
with Gaussian errors but with unit weights used throughout. The 
squares are for the LS refinement, and the circles are for the R /R  
refinement. 
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Fig. 3. A half-normal quantile-quantile plot, as in Fig. 1, for 
least-squares and robust/resistant refinements for a data set in 
which a Gaussian error distribution is contaminated by 10% of 
another Gaussian distribution with a standard deviation three 
times greater. The squares are for the LS refinement, and the 
circles are for the R /R  refinement. 
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arranged in ascending order. The abscissa for the Rh 
point is the value x t for which F(xi) = (1/2) + 
(2i -- 1)/80, where F(x) is the cumulative Gaussian 
distribution function. If the model is linear and the 
weights are properly assigned, this plot should be a 
straight line with zero intercept and unit slope. The 
ordinates for the LS and R/R refinements are dis- 
placed for clarity. 

As can be seen in Fig. 1, in case I the R/R procedure 
gives results which are virtually identical to those given 
by LS with fixed weights. Fig. 2 shows, however, that 
the distortion of the error distribution caused by using 
unit weights throughout produced a noticeable in- 
crease in the discrepancy between the refined structure 
and the 'correct' structure. Using the robust/resistant 
procedure, however, the effect of the initially 'wrong' 
weights is partially compensated and the results are 
closer to the assumed model for most parameters. Case 
III, shown in Fig. 3, represents the sort of error 
distribution which may be fairly common in real 
experimental data, i.e. most data points are good, but a 
small minority are influenced by some unmodelled 
effect that introduces random errors with a broader 
distribution. In this case, also, the iterative R/R 
procedure gives a result closer to the known model. 
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Fig, 4. A half-normal quantile-quantile plot, as in Fig. 1, for 
least-squares and robust/resistant refinements for a data set with 
a long-tailed 'slash' error distribution. Conventional least squares 
works poorly for long-tailed distributions. The squares are for the 
LS refinement, and the circles are for the R/R refinement. 

Case IV is an example of a pathological error 
distribution that rarely, if ever, appears in a real 
experiment. For the LS procedure there is a large 
difference between the refined model and the starting 
model. The R/R procedure, however, converged 
rapidly to a model that is recognizably similar to the 
starting model. 

While this study is not the sort of exhaustive Monte 
Carlo calculation that would be necessary to prove 
conclusively the robust character of the robust/re- 
sistant procedure, it does suggest that the modified 
procedure can be expected to give results as good as the 
conventional least-squares process in the refinement of 
good data and markedly better results for the re- 
finement of data sets that contain large deviations with 
frequencies appreciably greater than are expected in a 
Gaussian error distribution. With real data the various 
factors contributing to the variance of the observations 
are never completely known, so that the ideal con- 
ditions for the use of least squares are rarely present. A 
possible practical procedure is to refine the structure by 
both methods and compare the results. If the results 
agree, it gives some confidence that the data are good 
and the structure is reliable. If the results do not agree, 
this study indicates that the R/R procedure is more 
likely to lead to a reliable result. For many scientifi- 
cally interesting substances, it is difficult to obtain 
single crystals of the high quality necessary for 
collecting accurate data, and this procedure can be very 
useful in extracting meaningful structural information. 
However, the results must be examined with great care 
to make sure that the lack of fit in the conventional 
least-squares procedure is really due to a long-tailed 
error distribution rather than to an important de- 
ficiency in the model. 
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